

Our Ambitions

CO₂ EMISSION REDUCTION PER AVERAGE VEHICLE

-7 5 % IN 2030

-40% IN 2025

(-20% IN 2023)

2018 2019 2020 2021 2022 2023 54.9 54.3 51.6 49.7 46.7 43.9 tonnes 0.0 -1.1 -6.0 -9.5 -14.9 -20.0 **-** % FULLY ELECTRIC VEHICLES (BEVS)
SHARE OF TOTAL SALES

100% IN 2030

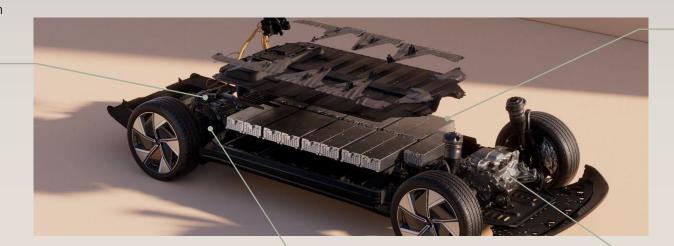
50% IN 2025

(16% IN 2023)

Geared for premium growth with a balanced portfolio

All models available are available as plug-in hybrids or fully electric. Since 2020 all new models have been fully electric. During 2023, we revealed two new cars, the EX30 in June and EM90 in November.

PLUG-IN AND MILD-HYBRIDS



EX30

EX90 Twin Motor Performance

ERAD 200 kW / 490 Nm PMSM SiC Inverter

Floor Battery

EFAD 180 kW / 420 Nm PMSM SiC Inverter

On Board Charger

EFAD Electric Front Axle Drive ERAD Electric Rear Axle Drive PMSM Permanent Magnet Synchronous Machine SiC Silicon Carbide

024 05 16 Piccardo Negri Security Class, Proprieta

SiC makes the difference

EC40 RECHARGE TWIN MOTOR

550km WLTP range

+100km compared MY21

~30km Range

increase due to SiC

The in house Inverter journey in BEV

2019

Tier 1 suppliers

Mid Decade

First In house Inverter

Master Power Electronics

FIVE REASONS TO GO IN HOUSE

SU STAIN ABLE

Secure design and component selection according our sustainability requirements

PR ODU CT

Optimize System
Design of our
Powertrains and
Vehicles

TECH NOL OGY

Speed up new Technologies introduction

CUST OM FRS

Optimize Product attributes.

No one knows ou customers better then us

FOR SELIFE

Ensure Reliability and Quality

VOLVO

Next 3 Challenges

Secure supply chain: diversification and alternatives

Create a Power Electronics Ecosystem: Scaling up competence and infrastructure

Optimize Circularity and Sustainability without compromising performance and cost

POWER SEMICONDUCTORS

AI FOR DESIGN OPTIMIZATION

KEY AREAS

CONVERTER TOPOLOGIES TECHNIQUES

MANUFACTURING

AND PROCESSES

VIRTUAL PROTOTYPING

Power Electronics Department

OUR NUMBERS

12	~170	2
Teams	People	Technology
		areas
10	2	10₊
Master Thesis/Year	Ongoing PhD	Advanced engineering projects

